Optimal robot excitation and identification
نویسندگان
چکیده
This paper discusses experimental robot identification based on a statistical framework. It presents a new approach toward the design of optimal robot excitation trajectories, and formulates the maximum-likelihood estimation of dynamic robot model parameters. The differences between the new design approach and the existing approaches lie in the parameterization of the excitation trajectory and in the optimization criterion. The excitation trajectory for each joint is a finite Fourier series. This approach guarantees periodic excitation which is advantageous because it allows: 1) time-domain data averaging; 2) estimation of the characteristics of the measurement noise, which is valuable in case of maximum-likelihood parameter estimation. In addition, the use of finite Fourier series allows calculation of the joint velocities and accelerations in an analytic way from the measured position response, and allows specification of the bandwidth of the excitation trajectories. The optimization criterion is the uncertainty on the estimated parameters or a lower bound for it, instead of the often used condition of the parameter estimation problem. Simulations show that this criterion yields parameter estimates with smaller uncertainty bounds than trajectories optimized according to the classical criterion. Experiments on an industrial robot show that the presented trajectory design and maximum-likelihood parameter estimation approaches complement each other to make a practicable robot identification technique which yields accurate robot models.
منابع مشابه
Experimental Robot Identification Using Optimised Periodic Trajectories
This paper describes a new approach to the parameterisation of robot excitation trajectories for optimal robot identification. The trajectory parameterisation is based on finite Fourier series. The coefficients of the Fourier series are optimised for minimal sensitivity of the identification to measurement disturbances, which is measured as the condition number of a regression matrix, taking in...
متن کاملOptimal discrete-time control of robot manipulators in repetitive tasks
Optimal discrete-time control of linear systems has been presented already. There are some difficulties to design an optimal discrete-time control of robot manipulator since the robot manipulator is highly nonlinear and uncertain. This paper presents a novel robust optimal discrete-time control of electrically driven robot manipulators for performing repetitive tasks. The robot performs repetit...
متن کاملAn Optimal Information Method for Mobile Manipulator Dynamic Parameter Identification
High-performance robot-control algorithms often rely on system-dynamic models. For field robots, the dynamic parameters of these models may not be well known. This paper presents a mutual-information-based observability metric for the online dynamic parameter identification of a multibody system. The metric is used in an algorithm to optimally select the external excitation required by the dyna...
متن کاملParticle Swarm Optimization Based Parameter Identification Applied to a Target Tracker Robot with Flexible Joint
This paper focuses on parameter identification of a target tracker robot possessing flexible joints using particle swarm optimization (PSO) algorithm. Since, belt and pulley mechanisms are known as flexible joints in robotic systems, their elastic behavior affecting a tracker robot is investigated in this work. First, dynamic equations governing the robot behavior are extracted taking into acco...
متن کاملParameters Identification of an Experimental Vision-based Target Tracker Robot Using Genetic Algorithm
In this paper, the uncertain dynamic parameters of an experimental target tracker robot are identified through the application of genetic algorithm. The considered serial robot is a two-degree-of-freedom dynamic system with two revolute joints in which damping coefficients and inertia terms are uncertain. First, dynamic equations governing the robot system are extracted and then, simulated nume...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Robotics and Automation
دوره 13 شماره
صفحات -
تاریخ انتشار 1997